The origin and extent of coarse-grained regularities in protein internal packing.

نویسندگان

  • Zerrin Bagci
  • Andrzej Kloczkowski
  • Robert L Jernigan
  • Ivet Bahar
چکیده

Despite the suitability of various lattice geometries for coarse-grained modeling of proteins, the actual packing geometry of residues in folded structures has remained largely unexplored. A strong tendency to assume a regular packing geometry is shown here by optimally reorienting and superimposing clusters of neighboring residues from databank structures examined on a coarse-grained (single-site-per-residue) scale. The orientation function (or order parameter) of the examined coordination clusters with respect to fcc lattice directions is found to be 0.82. The observed geometry, which may be termed an incomplete distorted face-centered cubic (fcc) packing, is apparently favored by the drive to maximize packing density, in a fashion analogous to the way identical spheres pack densely and follow fcc geometry. About 2/3 of all residues obey this packing geometry, while the remainder occupy other context-dependent positions. The preferred coordination directions show relatively small variations over the various amino acid types, consistent with uniform residue viewpoint. Both the extremes of solvent-exposed and completely buried residue neighborhoods approximate the same generic packing, the only difference being in the numbers (and not the orientations) of coordination sites that are occupied (or left void for solvent occupancy). We observe the prevalence of a rather uniform (tight) residue packing density throughout the structure, including even the residues packed near solvent-exposed regions. The observed orientation distribution reveals an underlying, intrinsic orientation lattice for proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر رس‌های فیبری و املاح بر سرشتی‌های مهندسی خاک‌های نواحی خشک

In Iran, a large extent of the soils and water are facing with salinity; so the geotechnical properties of arid and saline soils are important for engineering design. In this study, the effects of salinity on geotechnical properties of fine-grained and coarse-grained soils containing fibrous clay minerals have been studied. The results showed that salinity was mostly a flocculated agent in fine...

متن کامل

Residue packing in proteins: Uniform distribution on a coarse-grained scale

The high packing density of residues in proteins ought to be manifested in some order; to date this packing order has not been thoroughly characterized. The packing regularity in proteins is important because the internal organization of proteins can have a dominant effect on functional dynamics, and it can aid in the design, simulation and evaluation of structures. Packing metrics could also i...

متن کامل

Geochemical and isotopic (Nd and Sr) constraints on elucidating the origin of intrusions from northwest Saveh, Central Iran

Three intrusive granitoid bodies from northwest Saveh, central Iran, are embedded in volcanic sedimentary rocks of the Eocene,forming isolated small outcrops: Khalkhab quartz monzodioritic units (SiO2: ~52-57 wt %) to the northwest, Neshveh granodioriticunits (SiO2: ~62-71 wt %) to the northeast, and Selijerd granodioritic units (SiO2: ~63-69 wt %) to the southeast. The Khalkhab unit iscomposed...

متن کامل

All-atom modeling of anisotropic atomic fluctuations in protein crystal structures.

The accurate modeling of protein dynamics in crystalline states is essential for the development of computational techniques for simulating protein dynamics under physiological conditions. Following a previous coarse-grained modeling study of atomic fluctuations in protein crystal structures, we have refined our modeling with all-atom representation and force field. We have calculated the aniso...

متن کامل

YUP: A Molecular Simulation Program for Coarse-Grained and Multi-Scaled Models.

Coarse-grained models can be very different from all-atom models and are highly varied. Each class of model is assembled very differently and some models need customized versions of the standard molecular mechanics methods. The most flexible way to meet these diverse needs is to provide access to internal data structures and a programming language to manipulate these structures. We have created...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2003